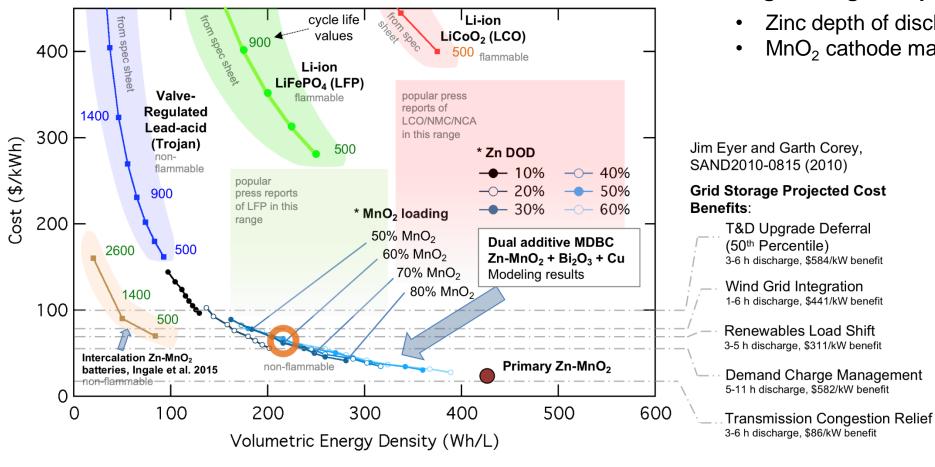
Engineering Rechargeability in MnO₂ Cathodes for low-cost and safe batteries

Joshua W. Gallaway

DOE OE Peer Review, 26-28 October 2021 Zinc & Lead Session, ID #505

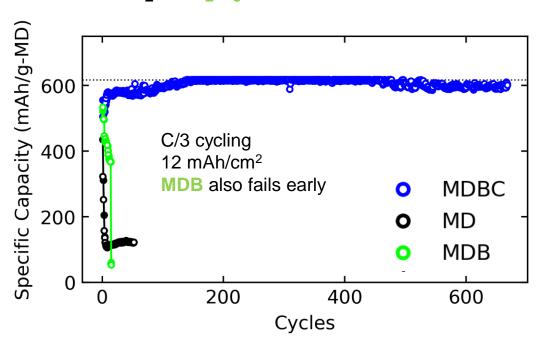


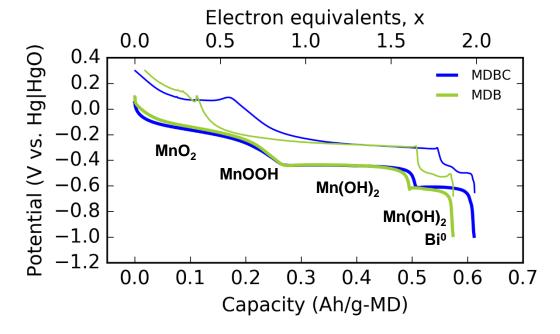
Outline

- 1. Project Background and Motivation
 - List of technical Tasks
- **2. Task 2**: Doped MnO₂ for low-cost Li-ion and Na-ion "beyond Li-ion" batteries
- **3. Task 3**: Mechanistic studies of doped MnO₂ for low-cost Zn-MnO₂ systems
- 4. Task 4: Mechanistic collaboration with SNL: Zn-CuO

GOAL: Low-cost and safe Zn-MnO2 grid batteries

Engineering a deep-cycled MnO₂ electrode


- Zinc depth of discharge (DOD)
- MnO₂ cathode mass loading


Our group's work is on improvement of the MnO₂ cathode.

Additives enable MnO₂ rechargeability

MDB: MnO₂ + Bi₂O₃ Ford Motor Company, 1980s

MDBC: MnO₂ + Bi₂O₃ + Cu City College of New York (CCNY), 2017

2010-2015, City College of New York, ARPA-E "Low-Cost Grid-Scale Electrical Storage Using a Flow-Assisted Rechargeable Zinc-Manganese Dioxide Battery"

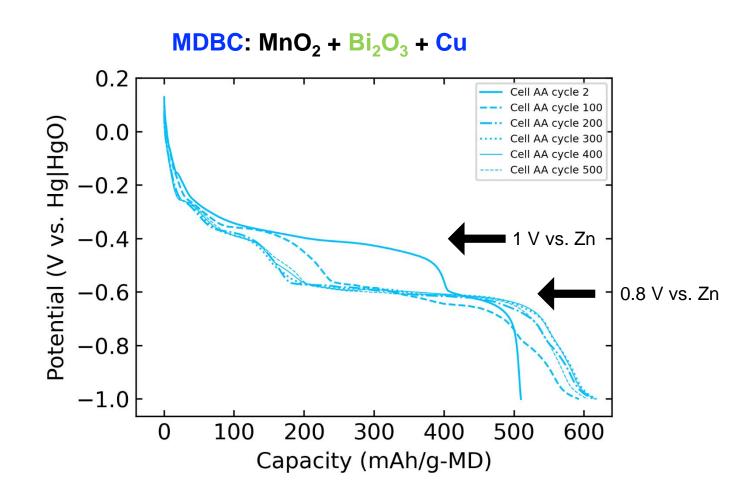
Yadav et al. *Nature Comm.*, 8 (2017) 14424. ~617 mAh/g (100% DOD)

Additives enable rechargeability

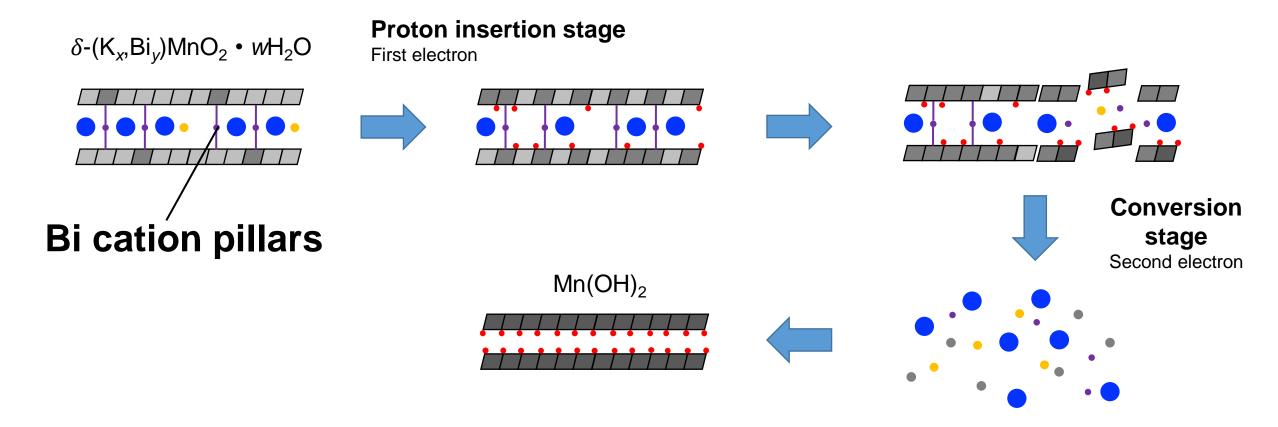
- Bi₂O₃ allows MnO₂ to recharge
- Addition of Cu allows this to reach high cycle life at high mass loading.

However: Challenges remain for implementation

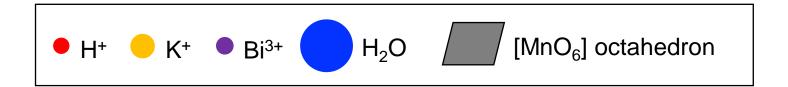
1. The mechanism of both Bi and Cu additives are unknown


 Bi is sometimes hypothesized to stabilize the MnO₂ structure by acting as a "molecular pillar"

2. A single cathode active material is desired


3. The Bi and Cu-doped MnO₂ electrode undergoes voltage loss

 Higher cathode voltage is desired for high energy density.


Our goal is to solve #1 in order to engineer a solution to #2 and #3

Proposed mechanism of MnO₂ cycling with Bi

$$\delta$$
-MnO₂ + 2H₂O + 2e⁻ \rightleftharpoons Mn(OH)₂ + 2OH⁻

Our 2021 and 2022 Tasks

Task 2: Reversible Intercalation in MnO₂ in non-aqueous systems

The effect of Bi pillaring on MnO₂ cathode used for non-aqueous intercalation batteries

- Li-ion
- Na-ion "beyond Li-ion"

The all-Mn layered oxide cathode can lower the cost of these batteries and make them appropriate for grid applications.

Nature of the Bi pillaring effect will be clarified through this study

Task 3: The effect of Bi in aqueous MnO₂ systems

Deep science on aqueous mechanism. Does Bi:

- Leave the MnO₂ structure as a hydrated [Bi(H₂O)_n]³⁺ species
- Remain as a coordinated [BiO_x] cluster

Identifying this intermediate will elucidate underlying mechanism in the MnO₂ system

Task 4: Structural effect of Bi doping in alkaline CuO batteries

Collaboration with Timothy Lambert's group at SNL on Bi doping in Zn-CuO batteries

Our 2021 and 2022 Tasks

Task 2: Reversible Intercalation in MnO₂ in non-aqueous systems

- 2.1: Structural and Morphological Effect of Bi Doping
- 2.2: Ion Exchange Methods
- 2.3: Li-ion Battery Cycling
- 2.4: Li-ion Battery Electrochemical Characterization
- 2.5: Li-ion Battery Operando X-ray Diffraction
- 2.6: Solid Electrolyte Li-ion Battery
- 2.7: Beyond Li-ion Cycling

Task 3: The effect of Bi in aqueous MnO₂ systems

- 3.1: Crystal structure changes during MnO₂ cycling in a wide range of d-spacings
- 3.2: MnO₂ operando spectroscopy

Complete in 2021

Complete in 2021

3.3: MnO₂ structure modeling

Task 4: Structural effect of Bi doping in alkaline CuO batteries

4.1: Operando EDXRD

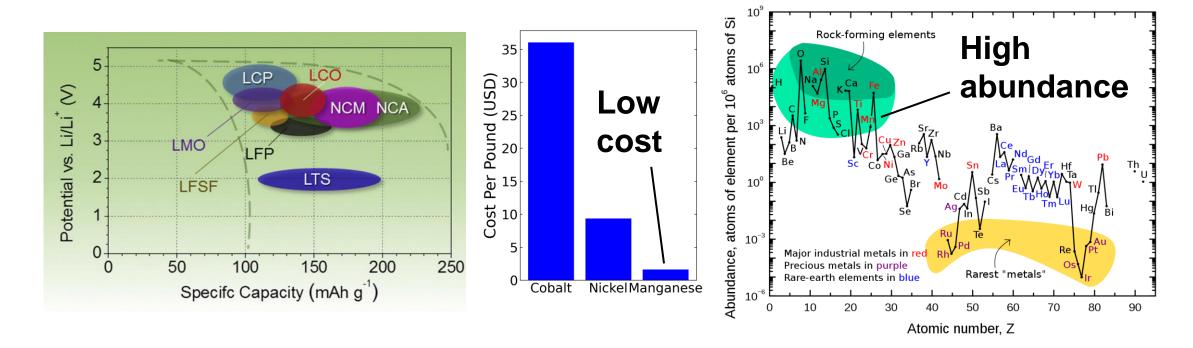
Complete in 2021

4.2: Operando X-ray spectroscopy

2021 Accomplishments

Remaining Tasks are for 2022

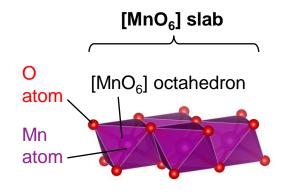
Poster:


Kim MA and Gallaway JW, "Enabling stable Li-ion cycling of a Mn layered oxide via Bi-doping."

Matthew Kim

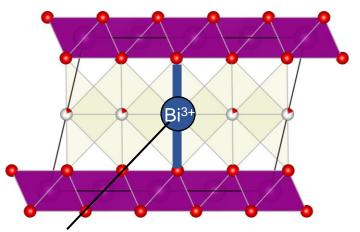
Task 2: Reversible intercalation in MnO₂ in non-aqueous systems

Layered MnO₂ Li-ion battery cathode



Spinel manganese oxide (LMO) has low capacity and poor stability.

Layered manganese oxide has high theoretical capacity comparable to cobalt oxide.


- · Cost of Co is high. Replacement with Mn would dramatically lower cost.
- · Co is regionally locked. Mn is extremely widely available.
- Mn is less environmentally hazardous and less toxic

Doped δ -MnO₂ target material

 δ -MnO₂ is a layered oxide where Mn is the primary transition metal. It is analogous to CoO₂, the most common Li-ion battery cathode.

δ -MnO $_2$

We seek a "permanent pillaring" effect, whereby Bi³⁺ stabilizes the material to allow repeated Li+ cycling.

Cation pillar

Bi³⁺ must help hold the layers together, without hindering Li⁺ transport.

δ -MnO₂ can be synthesized several ways

Resulting Material		Method	
Crystallinity	Interlayer Cations (A)	Method	!
Disandanad	K ⁺	Wet synthesis from Mn salts	T '
Disordered	N.	Sol-gel synthesis	├ Wet methods
Crystalline	Mg^{2+}	Autoclaved Mg(MnO ₄) ₂	1
Crystalline	K ⁺	Fine powder KMnO ₄ heated	15
Crystalline	K ⁺ and Bi ³⁺	Fine powder KMnO ₄ + Bi(NO ₃) ₃ heated	High temperature
	K ⁺ and Cu ¹⁺		1
Disordered	K ⁺ and Mg ²⁺	Cation salt inserted in birnessite	Cation exchange
	K ⁺ and Bi ^{3+*}		_ Cation exchange
Crystalline	K ⁺ and Bi ^{3+*}	Cation salt inserted in birnessite	<u> </u>

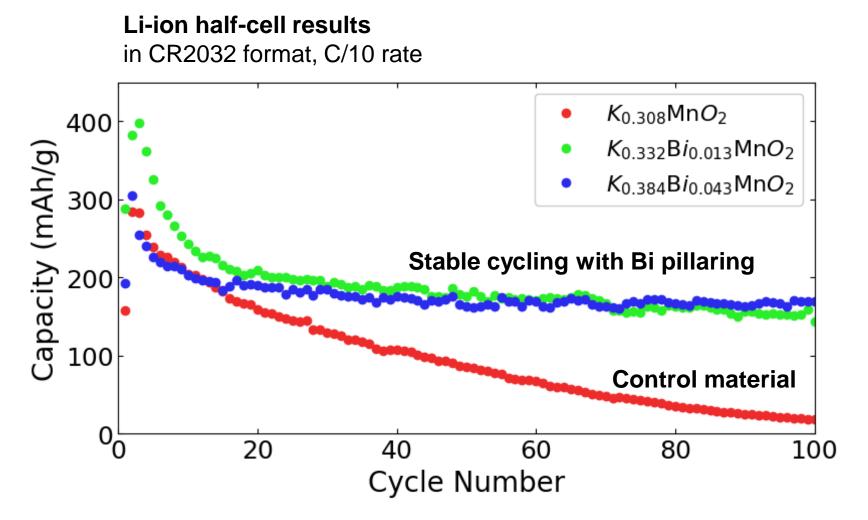
We tried many methods to produce δ -MnO₂ with cations inserted into the interlayer.

The indicated high temperature method produced crystalline material and enabled the amount of Bi³⁺ to be tuned.

Doped δ -(K_x , Bi_y)MnO₂ - wH₂O

Chemical formula of (K_xBi_y)MnO₂ • wH₂O

x	у	w	Chemical formula	Molar mass (excluding H ₂ O)
0.377	0.156	0.56	K _{0.377} Bi _{0.156} MnO ₂	134.18 g/mol
0.404	0.084	0.53	K _{0.404} Bi _{0.084} MnO ₂	120.31 g/mol
0.384	0.043	0.52	K _{0.384} Bi _{0.043} MnO ₂	110.87 g/mol
0.365	0.018	0.52	K _{0.365} Bi _{0.018} MnO ₂	104.97 g/mol
0.332	0.013	0.40	K _{0.332} Bi _{0.013} MnO ₂	102.63 g/mol
0.315	0.01	0.53	K _{0.315} Bi _{0.010} MnO ₂	101.29 g/mol
0.315	0.006	0.46	K _{0.315} Bi _{0.006} MnO ₂	100.58 g/mol
0.306	0.002		K _{0.306} Bi _{0.002} MnO ₂	99.36 g/mol
0.308	0.0	0.26	K _{0.308} MnO ₂	98.97 g/mol

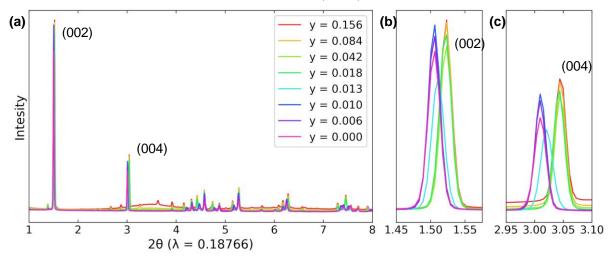

We have produced a series of materials that vary in amount of Bi³⁺, which is given by "**y**" in the chemical formula.

All materials are highly crystalline and therefore straightforward to characterize.

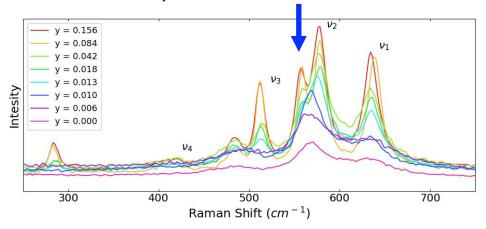
Higher y generally correlates to higher x and w.

Values for x and y from inductively coupled plasma (ICP). Values for w from thermogravimetric analysis (TGA).

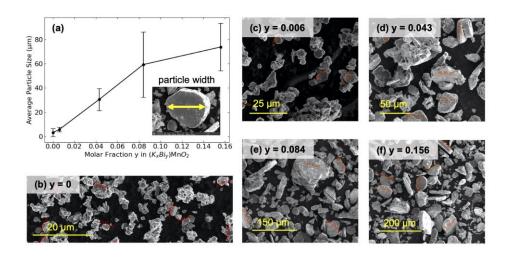
Li-ion battery cycling with Bi-pillared MnO₂

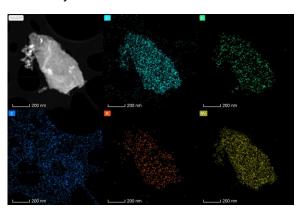

- Cycling results show that Bi³⁺ successfully stabilizes the material.
- It is possible that Bi³⁺
 stabilizes the material by
 preventing conversion to
 LiMn₂O₄ spinel.

This is the most favorable stabilization of layered MnO₂ reported, to our knowledge.

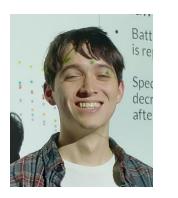

Material characterization of (K_x,Bi_y)-MnO₂

XRD results of $(K_xBi_y)MnO_2$ at various values of y.


Data collected at NSLS-II, beamline 28-ID (XPD)


Raman results of $(K_xBi_y)MnO_2$ at various values of y

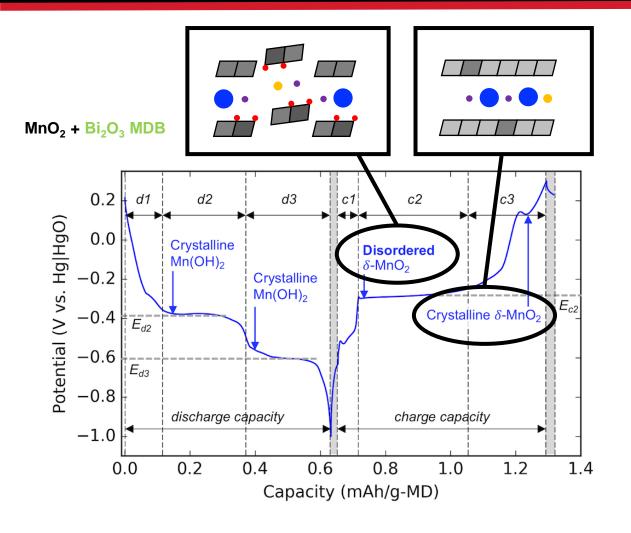
Morphology of (K_xBi_v)MnO₂ at various values of y

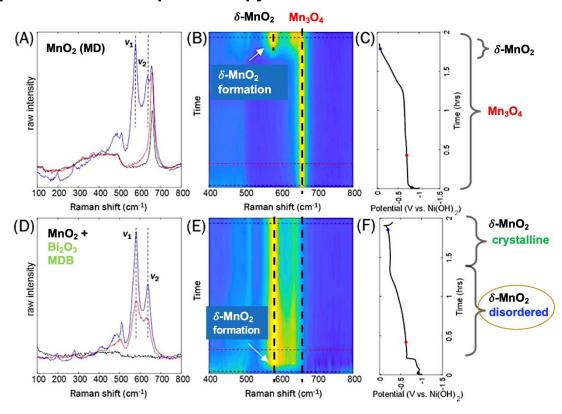


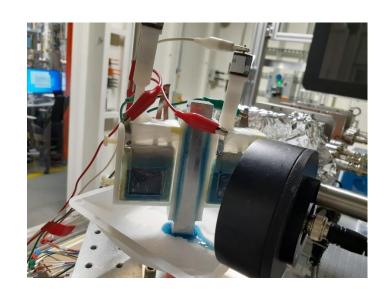
EDS of (K_xBi_y)MnO₂ at various values of y

Poster:

Goulart J, Guida D, and Gallaway JW, "Operando characterization of rechargeable alkaline batteries for grid scale storage."

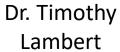

James Goulart with Dom Guida


Dr. Andrea Bruck


Task 3: The effect of Bi in aqueous MnO₂ systems

2020 Publication

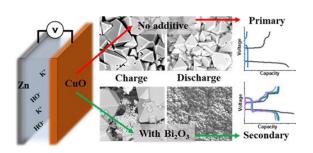
Operando Raman Spectroscopy

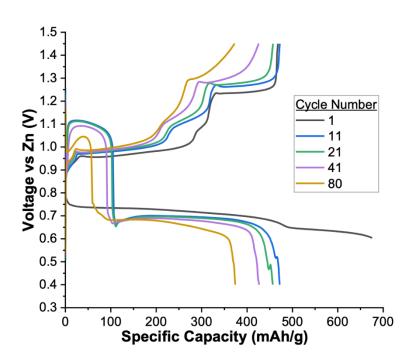


Task 3.2 data collected at NSLS-II

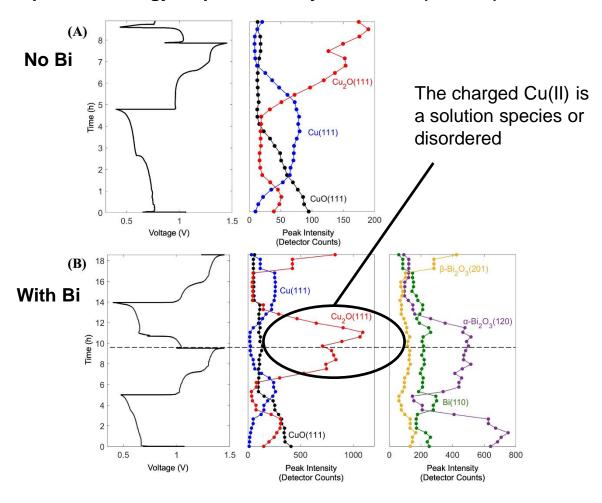
- Operando Quick Extended X-ray absorption fine structure (QEXAFS)
- Atomic positions around Bi atoms
- Conducting data analysis currently
- Also operando Raman underway

David Arnott

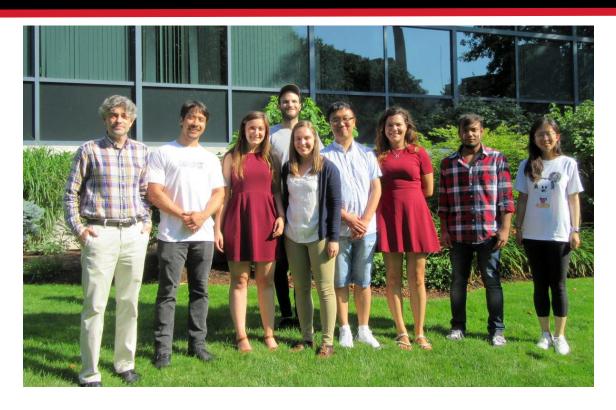



Dr. Noah Schorr

Task 4: Structural effect of Bi doping in alkaline CuO batteries


2021 Publication

Rechargeable Zn|(CuO-Bi₂O₃) batteries 2-electron cathode



Operando energy dispersive X-ray diffraction (EDXRD)

Acknowledgements

Gallaway Lab, Northeastern University

Postdoctoral

Dr. Andrea Bruck

Dr. Bebi Patil

PhD

Benjamin Howell

Matthew Kim

Alyssa Stavola Dominick Guida

<u>MS</u>

James Goulart

Maximilian Ulbert Tristan Owen

Pushkar Gokhale

Zhicheng Lu

Undergraduate

Sydney Morris

Josie Lee

Erick Ruoff

Kamila Wawer

Claire Whitaker

Kamnsi Arachie

Ryan Stone

Chris Owen

This work was supported by the U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability, Dr. Imre Gyuk, Energy Storage Program Manager.

This research used resources at beamline 28-ID (XPD) of the National Synchrotron Light Source II, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704.

This work used resources from the thermal analysis facility at Northeastern University Center for Renewable Energy Technology (NUCRET) and the TEM facility at The George J. Kostas Research Institute for Homeland Security (KRI).

Special thanks to those at SNL:

Babu Chalamala Timothy Lambert Noah Schorr